
ON THE STABILITY OF FIRST-ORDER NONLINEAR 

EQUATIONS OF NEUTRAL TYPE 

PMM Vol. 34, N?4, 1970, pp. 587 - 594 

V. B. KOLMANOVSKII and V. R. NOSOV 
(Moscow) 

(Received March 27, 1969) 

The sufficient conditions of stability of the trivial solutions of first-order nonlinear equa- 

tions of neutral type with arbitrary (finite or infinite) lag are established. 

1. Let us consider the conditions of stability of the trivial solutions of equations of 
the form 00 a3 

z.(t) = - z(t--s)dK,(s)+ 2 a,z’(t-h,)+ 
s (1.1) 
0 n=1 

03 

+ 1 z'(t - S)h(S)dS + b(4 s(t + Q>, t>o 

0 

The stability of solutions of certain equations of the form (1.1) has been investigated 
in several studies. The conditions of stability of the solutions of these equations for 

b (t, 2 (t + T)) sz 0, a (s) = 0, a, z 0 were obtained in p]. In r2, 31 the suffici- 
ent conditions of stability for lagging equations with a, G 0, h (s) 3 0 were obtained 

by constructing Liapunov functional% 
The application of Liapunov’s second method to equations of neutral type entails spe- 

cific difficulties having to do with the dependence of the right sides of these equations 

on the derivatives of the solutions. The authors of [4] formulated the general theorems 

of Liapunov’s second method for equations of the form 

s’(t) =f@, z(t-7(t)), 2’ (t - ‘G (t)) 
In the present study we establish the conditions of stability of the trivial solutions of 

Eqs. (1.1) with the aid of Liapunov’s method of functionals as developed in [5] for sys- 
tems with lag. We note, however, that the functionals constructed below are not Liapu- 

nov functionals in the strict sense, being merely of constant rather than of fixed sign. 

The use of such sign-constant functionals makes it possible to circumvent the aforerpen- 
tioned difficulties presented by equations of neutral type and reduces the problem ofestab- 

lishing the stability of Eq. (1.1) to the solution of two ancillary problems. 
The first problem consisiting in constructing a nonnegative functional with a negative- 

definite derivative along the trajectories of system (1.1). 
The second problem consists in analyzing the stability of the solution CC (t) c 0 of 

the following inequality : 

Ir(t)- ~a~~(t-h,)--~(t-s)h(s)dsI~c, (1.2) 
?I==1 0 

The symbols Ci here and below denote certain positive constants. 
We also note that some of the distinctive features of the above problem have to do 

with the fact that the deviations of the argument can be infinite. 

2. In the discussion below we assume that the coefficients of Eq. (1.1) satisfy the fol- 
lowing requirements. 

560 
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The variation of the kernel K,, (s) is bounded over the semiaxis [O, 

corresponding integral in (1.1) must be construed in the Stieltjes sense. 
h (s) 1s bounded and Riemann-integrable over [0, 001. 

Finally, all the constants 

h, > 0, 1% I + Ian I + a** + I% I + .'. -= 

Let us agree that : 

IX) and the 

The function 

K,(s) = \h(S’)dsl + 2 a,, Kl(0) = 0 
0 h,-Ss 

where summation is carried out over those values of n for which h, S s, and set 

~a,y(-h,)+~y(--s)h(S)ds=~y(--s)dK~(s) (2.1) 
n=r IJ 0” 

for any bounded RiemaM-integrable bounded function y (s), s < 0. We note that the 
symbol in the right side of (2.1) is generally not a Stiltjes integral, since this integral 

may not exist under the above assumptions concerning y (s) . 
We denote by Q the direct product of the semiaxis [0, oo) and the space C (-co, 01 

of continuous functions cp (t) of the argument ‘t bounded on the semiaxis (- cc, 01 ; 
the argument z varies in the range - 00 < r < 0. 

The metric in Q is defined by the formula 

p (@I, cpl), Q2, cp2)) = I t1 - t2 I + SUP60 I 91 w - 'p2 (4 I 
(p1,'pzEC(- 00, 01, h, tz > cl 

The functional b (t, ‘p (z)) is defined and continuous on the space Q and satisfies 
the conditions 

b(O)=% Ib(OfJ)- b(t, II;,~2~~,~(-S)-~~-S)IZdK,~~) (2.2) 

(where the function Ks (a) is monotonically iondecreasing) for all (p, II, E c (- cc, 

01 . Let us set al 

aij = 
s Si 1 dKj (S) 1 (i = 0, 1, . . .) j = 0, 1, 2, 3, 4) 
0 

From now on we assume that 

a00 < 00, a,,< 1, a,,< 00 (2.3) 
The solution 5 (t) of Eq. (1.1) for t > 0 is determined by the initial conditions 

z (t) = cp (t), 2’ (t) = $ (t), r G 0 (2.4) 
From now on we shall limit ourselves to initial conditions which satisfy Conditions(A): 
cp (t), t < 0 is a continuous bounded function ; 4 (t) is a function bounded on 

(- 00, 01 and is RiemaM-integrable over every finite interval $ (t) = cp’ (t) almost 
everywhere. 

To emphasize the dependence of the solution z (t) of problem (1. l), (2.4) on the 
initial conditions we shall occasionally denote it by the symbol z (t, ‘p, I@). Under 

assumptions (2.2)-(2.4) the method of successive approximations (such as that used to 

prove Theorem 2 of Is] affords a ready means of provfng the existence and uniqueness 
of the function i (t) bounded and Riemann-integrable over every finite interval, equal 
to $ (t) for t < 0 , and such that the functions 
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x’ (t), x(t) = cp(O) + $Wds 
0 

are the solution of problem (1.1). (2.4). 

8. Definition 1. We call the trivialsolution of Eq, (1.1) - 

1) “stable” if for any E > 0 there exists a 6 (E) > 0 such that 1 x (cp, $, t) 1 < 
< E for all t > 0 provided that Conditions (A) are fulfilled and that 

II cp II = sup I cp (4 I < 6 ( E) CT -G 0) 
2) “asymptotically stable” if it h stable and 

limt,, x (cp, $,, t) = 0 

Now let us prove a simple lemma concerning the stability of the trivial solution of 
inequality (1.2) which we shall need below. 

Lemma 1. Let the function x (t) = cp (t) for t ,( 0 (cp (t) E C (- 00, 01); let 
it satisfy inequality (1.2) for t > 0 , and let condition (2.3) be fulfilled. The estimate 

Ix 0) I (1 - %I) G co + a01 II cp IL t>o 

is then valid. 

Proof. Let us introduce the function 

p(t)=maxIs(s)I, O<s\<t 

From (1.2) we obtain the relation 

I z 0) I f co + a01 (FJ @I + II cp II) 
This implies that 

p (t) (1 - aor) < co + a01 II ‘p II 
Lemma 1 has been proved. 

Let us set (3.1) 

Z(cp(z))=cp(O)- ~u~~~-hn)-~‘P(--g)h(s)ds=p(o)-~~(-~)d~~~s) 
n=1 0 

for any cp (T) E C (- 00, 01 . 
Theorem 1. The trivial solution of Eq. (1.1) is asymptotically stable if conditions 

(2.2). (2.3) are fulfilled and if there exists a functional 

Ir (cp (r)) = w (cp (r)) + z2 (cp (r)) (3.2) 

defined on the space Q which satisfies Lipschitz’s local condition (whereby for any N 

there exists an mN such that ( 1’ (cp (T)) - V ($(T)) I < mN 11 cp - ‘II, 11 for 

11 cp (r) II < N, II 4 (r) II < N) ; moreover. 

0 G w (9 ($1 G 01 (II cp II) (3.3) 

and the derivative of functional (3.2) computed along the trajectories of system (1.1) 

exists and satisfies the condition 

(3.4) 
for almost all t 2 0 (in the Lebesgue measure). The functions oi (r) in estimates 
(3.3) and (3.4) are continuous, and oi (0) = 0, oi (r) > 0 for r > 0. 

Proof. We infer from (3.1) - (3.3) that 
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v (CF (4) < 01 (II cp II) + (1 + ao1)’ II ‘p I? (3.5) 

Further, Lipschitz’s local condition and the aforementioned boundedness of the deriva- 
tive z’ (t) of the solution x (t) over every bounded interval imply that the functional 

v (X (t + T)) is continuous as a function of t . This means that for all nonnegative t,, t, 

we have 
dV (x ff + z)) dt 

Hence, by virtue of (3.2) - 3.4). 

.za (x (t + r)) d v (5 (t + r)) d v (cp (7)) 

This result, expression (3.5), and Lemma 1 imply that 

I 2 VI I G & I(01 (II cp II) + (1 + cloda II cp IV -t 0101 II cplll 

The stability of the trivial solution of Eq. (1.1) has thus been established. 
To prove asymptotic stability we need only note that by virtue of Lemma 1 the modu- 

lus IX’ .(t) 1 for any bounded solution x(t) of problem (1. l), (2.4) is also bounded, and then 

repeat the argument of Krasovskii ( [5]. p. 181). 
Theorem 1 has been proved. 

4, Theorem 2. Let conditions (2.3) be fulfilled and let the kernel Ka (S) have 

a discontinuity of magnitude a > 0 at zero; moreover, let 

a (1 - aol) > (1 + a011 (bo~~,l+ 
$0 

62) (4.1) 

0112 +%l +a10 < 00 

The trivial solution of Eq. (1.1) is then asymptotically stable. 

Proof. We need merely show that the requirements of Theorem 2 enable us to con- 

struct a functional which satisfies the conditions of Theorem 1. We begin by assuming 

that CZ,,~ = 0 (which means that b (t, cp (T)) E 0) and consider the functional 

vo (x (t + z)) = 22 (Z (t + z)) + a00 T I dK1P) I i x2 (4 da+ 
‘0 t’s 

+ (1 + am) y I dKo (s) I i z2 (4 da (4.2) 
$0 1-s 

The validity of estimates (3.3) follows from the inequality 
co 

5 I dKi, (s) ) i x2 (sl) dn G ali (I 3 (t + z) if (i=d,l) (4.3) 

0 t-s 

Let us compute the derivative of functional (4.2) along the trajectories of system 

(1.1). Since 
z’ (x (t + z)) = 2’ (t) - p 2’ (t - s) dK1 (s) = 

0 

=-a~@)- T x(t-s)dKo(s)+b(t, = (t + 7)) 

-CO 

for almost all t > 0 , it follows that 
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d’V0 (5 (t + f)) 
dt =--22 (z (t + z)) [a 3 (t) + 

05 cc! 

+ \ 2 (t - S) dKo (S) + b (t , z (t + Z))] - m j 9 (t - S) 1 dK1 (S) I - 

$0 0 

- (1 + a01) T z2 (t -4 1 dKo (s) 1 + z2 (t) [a,.aol f (1 -t- ml) 

$0 
T I dKo (s) II 

$0 - 

Hence, making use of (2.2), (2.3) and the Cauchy-Buniakowski inequality, we find that 

So (5 (t + ~1) 
dt 

,( 222 (t) 
t 
- (I + mo1 -t f 1 dKo (s) 1 (1 + sol)] 

+o 
for almost all t> 0 . 

Hence, functional (4.2) satisfies the requirements of Theorem 1. This proves the vali- 

dity of Theorem 2 for ao2 = 0. If czo2 > 0 we need merely consider the functional 

I dK1 (4 1 \’ x2 (~1) dsl + 
2s 

+ (jol f/aM + +=, 1 dKz (s) \II z2 (h) dtl 
0 t”s 

(4.4). 

As above, it is easy to show that functional (4.4) satisfies inequalities (3.3), and that 
its derivative satisfies the estimate 

dV(zi+ 4) <29(t) 
i 

-a (1 - a01) + (i+ ad (5 IdKo(s)l+ vc)] 
+o 

Theorem 2 has been proved. 

6. Lemma 2. Let requirements (2.2), (2.3) and the condition cool + a,, < 1 be 
fulfilled. The statement of Theorem 1 then remains valid if there exists a functional of 

the form 
v [cp (4 I = G2 (cp (4) + w Icp (dl (5.1) 

where 

2, ((p (r)) = cp (0) - r cp (- s) dKr (s) - y dK0 (s) j cp (M & (5.2) 
0 0 --s 

which satisfies (3.3), (3.4). 

This lemma can be proved by repeating verbatim the proof of Theorem 1. 

Theorem 3. Let conditions (2.2). (2.3) be fulfilled and let 

a10 + a01 < 1 

azo + al1 + al2 < M 

The trivial solution of Eq. (1.1) is then asymptotically stable. 
Proof. We begin by assuming that ao2 > 0 and introducing the functional 
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co 

~l~(~+‘T)l=~l*(~(~+Z))+(p+a”s~) \ 1 f%(s) { 5 z2(t:)dt1 + (5.3) s 
0 1-s 

-$- (1 + alo + 101) ot02 --IA yIM%@) i 5’ (tl) &I + (p + a’%) y 1 dKo (s) [ i dtx i zz (tz) dta 

0 t--s 0 f--s f, 

where 2, (2 (t f r)) is defined by formula (5.2). Inequality (4.3) and the conditions of 

Theorem 3 imply that functional (5.3) satisfies the estimates 

zrz (5 (t -I- r)) d v 15 (t + @I < c, ]I 5 (t + z) 11” (5.4) 
The derivative 

2,’ (z (t + z)) = - Bx (r) + b (r, 8 (t + r)). 

for almost all t > 0 . Moreover, expressions (2.2), (2.3) yield the estimates 

2b (t , 5 (t + z)) y dKo (s) 

t 

[ 5 (tl) dtl S 

‘0 t:* 
to co 

--‘I* 
G wL$, c 

2% (t - s) dKa (s) + u’k 

Ti 

i 1 dKo (s) I i x2 (tl)dtl 
0 t--r 

Z&c (4 5 dKo (s) 

t 00 

5 5 (tl) dtl< fb9 (t) GO + p 1 1 dKo (s) ] i x2 (tlldtl 

0 f---S 0 t--s 

From this we readily infer that 

dy lx 1’ ‘I] G 22% (t) 1-p (1 - or01 - ati) + a,“*@ + ~10 + am)] 

for almost all t > 0 . 

This fact, expression (5.4). and lemma 2 for a,, > 0 imply the validity of Theorem 

3 in this case. 

To prove Theorem 3 for cco2 = 0 we must make use of functional (5.3) minus its 
third term; ao2 must be set equal to zero in the remainlng terms. 

Note 1. If h (a) G 0, a,, E 0, Theorems 2 and 3 become the corresponding results 

of [3]. 
Note 2. By modi~~g functional (5.3), we can obtain other conditions of stability 

of Eq. (1. I). let us cite some of these conditions. We can make use of the fact that an 

arbitrary function K, (s) with bounded variation can be expressed as the difference 

K, (s) = Ks (S) - I& (s) bet ween two monotonically nondecreasing bounded func- 
tions. Here we need merely add the expression 

(1 + sol + ars) T d& (s) 5 9 (tr> drr + 
0 t-s 

to functional (5.3) in which K, (s) has been replaced by Ks (s), b by czos and a,, by 

%3 l 
This new functional enables us to prove 
Theorem 4. Let conditions (2.2), (2.3f be fulfilled and let 
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“01 +a,,< 1 

a03 > Ia04 -I- ~oz”‘I 
1 + a01 + a13 
1 _ aol _ aI3 

a11 +a12 +a14 $-%3-c 00 

The trivial solution of Eq. (1.1) is then asymptotically stable. 
Example. Let us consider the equation 

00 

2’ (t) = - r1 
s 

5 (t - s) e’$ds + rzx’ (t - h) V>O) 
0 

(5.5) 

where r,, r,, h > 0 are some constants. According to Theorem 3 the trivial solution of 
Eq. (5.5)is asymptotically stable if 

‘1>0, Irsl+rr<l 

8. By altering slightly functionals (4.2). (5.3) which we constructed in proving Theo- 

rems 2 - 4, we can obtain the conditions of stability of the trivial solutions of the equa- 
tions 

;P 
z’(t) = - 3 2 (t - a) MO (t, s) + i a, (t) z’(t - h, (t)) + 

0 ?I=1 

$Ss.(t-s)~(t,s)ds+b(t,r(t+r)) (6.1) 
0 

Since this entails some very cumbersome functionals, we shall consider only the sim- 
plest cases ; these, however, suffice for indicating the alterations which must be made in 

functionals (4.2), (5.3) in considering more general equations of the form (6.1). Let us 

find the conditions of stability of the trivial solution of the equation 

..(t)=--b(t)s(t--h) +cz’(t-h), t>O (6.2) 

The solution of Eq. (6.2) for t > 0 is determined by initial conditions (2.4), and 

stability must be construed in the sense of Definition 1. We assume that the function 

b (t) is continuous and nonnegative. The functional 

V[x(t-s)] = lx(t)-cx(t-h)-_tCb(s+h)x(s)&]P+ 
2 

t t t 

+ tci tShb(s + 2h) x2 (~)ds + i b(t, + 2h)dt,a b(t, + h)l(t,)&, 
f:h I 

enables us to show (as we did in proving Theorem 3) that the trivial solution of Eq.(6.2) 
is asymptotically stable if 

“I;! [ICI+ s b(s+ Ws)<l 
t-h 

SUP 
i 

-2b(t+h)+Icj[b(t+h)+b(t+2h)l+ 
00 

f 

+b(t+W $ [b(s+It)+b(s+2h)lds)<O 
t-h 
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The motion of a self-exciting gyrostat is Investigated in the special case where the force 

moment of the housing acts along one of the axes of inertia of the gyrostat while the 
projection of the gyrostatic moment (the moment of the relative momentum of the inter- 

nal flywheels) on this axis is equal to zero. The parameters of the problem are the force 
moment and the moments of momenta of the flywheels, which are all assumed to be 

constant. The dependence of the hodograph of the angular velocity vector of the gyro- 

stat on these parameters is investigated; the domains of parameter values corresponding 
to various types of motion are determined. 

Grammel fl. 21 investigated a similar problem for a solid without internal rotations. 

The present study constitutes an extension of this familiar case. 

1. The inftlrl relrtionr. The motion of a gyrostat with a constant gyrostatic 
moment h under the action of an external moment m is described by the following sys- 
tern of equations : 

Alo + (A, - A,)o,o, + wzh3 - ash, = m, 
A2w2* - (A3 - A,)o,o, + oshl - alhs = m2 (1.1) 
A 3m3’ + (A, - 4) ~1~2 + wlh2 - m2hl = m3 

Here A,, As, As are the moments of inertia of the gyrostat with respect to its prin 
cipal central axes x1, z2, x3. For definiteness we assume that A, < A, < A,;, ai, 
02, 0s are the projections of the angular velocity vector of the gyrostat on the axes zr, 
22, ~3; hr, h2, hs are the projections of the gyrostatic moment, and ml, m,, m, are 


